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ABSTRACT Complex cellular processes are
modular and are accomplished by the concerted
action of functional modules (Ravasz et al., Science
2002;297:1551–1555; Hartwell et al., Nature 1999;402:
C47–52). These modules encompass groups of genes
or proteins involved in common elementary biologi-
cal functions. One important and largely unsolved
goal of functional genomics is the identification of
functional modules from genomewide information,
such as transcription profiles or protein interac-
tions. To cope with the ever-increasing volume and
complexity of protein interaction data (Bader et al.,
Nucleic Acids Res 2001;29:242–245; Xenarios et al.,
Nucleic Acids Res 2002;30:303–305), new automated
approaches for pattern discovery in these densely
connected interaction networks are required
(Ravasz et al., Science 2002;297:1551–1555; Bader
and Hogue, Nat Biotechnol 2002;20:991–997; Snel et
al., Proc Natl Acad Sci USA 2002;99:5890–5895). In
this study, we successfully isolate 1046 functional
modules from the known protein interaction net-
work of Saccharomyces cerevisiae involving 8046
individual pair-wise interactions by using an en-
tirely automated and unsupervised graph cluster-
ing algorithm. This systems biology approach is able
to detect many well-known protein complexes or
biological processes, without reference to any addi-
tional information. We use an extensive statistical
validation procedure to establish the biological sig-
nificance of the detected modules and explore this
complex, hierarchical network of modular interac-
tions from which pathways can be inferred. Proteins
2004;54:49–57. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

Cluster analysis is an obvious choice of methodology for
the extraction of functional modules from protein interac-
tion networks. Clustering can be defined as the grouping of
objects based on their sharing of discrete, measurable
properties. A variety of clustering algorithms have been
developed and successfully used in diverse fields. In func-
tional genomics, clustering algorithms have been devised
for multiple tasks, such as mRNA expression analysis and
the detection of protein families.1,2

Our aim is to detect biologically meaningful patterns in
the entire known protein interaction network of Saccharo-

myces cerevisiae. This species was chosen because it is a
well-studied model organism for which large quantities of
interaction data are already available.3 It was previously
noted that the most reliable protein interaction assign-
ments are those supported by more than one method.4,5

Accordingly, we have devised a simple additive weighting
scheme for our data set that rewards repeated observa-
tions of interactions within and (in particular) between
experimental methodologies and provides us with a reli-
able confidence measure (see Materials and Methods).

RESULTS AND DISCUSSION

Because our aim is to isolate functionally coordinated
interactions (modules), after computing weights for each
interaction, we express the network of proteins (nodes)
connected by interactions (edges) as a network of con-
nected interactions [Fig. 1(a) and (b)]. In more general
terms, this procedure takes a graph G, consisting of edges
connecting nodes, and produces its associated line graph
L(G) in which edges now represent nodes and nodes
represent edges.6 This simple procedure is commonly used
in graph theory,7 and the line graph generated has a
number of advantages for graph clustering: 1) it does not
sacrifice information content because the original bidirec-
tional network can be recovered, 2) it takes into account
the higher-order local neighborhood of interactions, and 3)
hence, it is more highly structured than the original graph
[Fig. 1(c) and (d)].

This increase in local structure is illustrated by a
fivefold increase in the overall graph-clustering coefficient
after transformation of the original graph into the corre-
sponding line graph (from 0.06 to 0.33). The clustering
coefficient is a parameter that indicates, for each node, the
amount of adjacent nodes that are also adjacent to each
other.8 Subsequently, in this line graph of interactions,
each node represents an interaction between two proteins,
and each edge represents pairs of interactions connected
by a common protein. The increase in local structure in
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Fig. 1. Transforming a network of proteins to a network of interactions. a: Schematic representation
illustrating a graph representation of protein interactions: nodes correspond to proteins and edges to
interactions. b: Schematic representation illustrating the transformation of the protein graph connected by
interactions to an interaction graph connected by proteins. Each node represents a binary interaction and
edges represent shared proteins. Note that labels that are not shared correspond to terminal nodes in (a)—in
this particular case, A, D, E, and F in edges AB, CD, CE, CF. c: Graph illustrating a section of a protein network
connected by interactions. d: Graph illustrating the increase in structure as an effect of transforming the protein
graph in (c) to an interaction graph. e: Graph representation of Yeast protein interactions in DIP. f: Graph
representing a pruned version of (e) with the reconstituted interactions after transformation and clustering, as
described in Materials and Methods. These graphs were produced by using BioLayout.22
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this higher-order representation generates a graph that is
better suited to clustering algorithms such as TribeMCL,2

based on graph clustering by flow simulation.9 Clustering
the interaction network with use of this method yields a
total of 1046 clusters [Fig. 1(e) and (f)]. These clusters
range in size from 2 to 292 components (average size is
8.05) and form a scale-free protein network, in accordance
with the expected topology of protein interaction net-
works.10–12

Another distinct advantage of this approach is that it
produces an overlapping graph partitioning of the interac-
tion network. This implies that proteins may be present in
multiple functional modules. Many clustering approaches
cannot place elements in multiple clusters, which can be
unrealistic for biological systems, where proteins may
participate in multiple cellular processes and pathways. In
this analysis, each protein was on average present in 2.1
clusters. Furthermore, because clusters may be overlap-
ping (i.e., sharing proteins), very few interactions are
discarded by the method. In total, only 76 interactions
involving 146 proteins, which were weakly connected to
the main interaction network, were discarded by the
clustering method. These 76 interactions represent �1% of
the interactions in the initial interaction data, indicating
that the use of the protocol described here does not result
in a significant loss of data.

To test our hypothesis that detected clusters represent
functional modules, containing proteins that are involved
in the same coordinated functional process, we make use of
a variety of external biological information. Our rationale
is that proteins in valid functional modules will possess
consistent functional annotations indicating their common
involvement in the same biological process, whereas an
incorrect cluster will contain many proteins with disparate
or conflicting annotations indicating random assignment
to that module.

For each protein in a cluster, we obtain manually
derived regulatory and metabolic classifications (KEGG),
automatic functional classifications (GQFC), and also cel-
lular localization information (LOC) (from KEGG,
GeneQuiz, and MIPS, respectively; see Materials and
Methods). On average, the coverage of clusters is 20% for
regulatory and metabolic roles in KEGG, 45% for func-
tional classes in GeneQuiz, and 48% for cell localization in
MIPS. It is of interest that the coverage does not appear to
be dependent on the cluster size (see http://www.ebi.ac.uk/
research/cgg/proteinets/).

We then analyze the homogeneity of these annotations
for each cluster and each classification scheme. These
independent and distinct classifications guarantee that
cluster validation is not biased by any single classification
scheme. To test the significance of the overall clustering
result and not just of individual clusters, we obtain the
sum of all scores for all clusters and compare this score
with the distribution of equivalent summed scores from a
set of 1000 randomized clustered networks with the same
topology (Fig. 2). Keeping the same cluster size distribu-
tion ensures that we do not introduce any score bias
resulting from cluster size effects. The summed scores, for

each of the three classification schemes, are significantly
larger than score sums obtained from randomized cluster-
ings (Fig. 2). This result is highly significant because for
each classification scheme, not one of the 1000 random
expected scores was higher than the observed result (p
values of PKEGG � 0.001, PGQFC � 0.001, and PLoc � 0.001;
z score values of ZKEGG � 60.9; ZGQFC � 30.5; ZLOC �
39.5). This result clearly indicates that the clustering
obtained is distinctly nonrandom and that our algorithm
detects biologically meaningful modules from the protein
interaction network (Fig. 2).

To further substantiate that detected clusters corre-
spond to functional modules (i.e., their members partici-
pate in common biological processes), we ask whether
detected clusters are also enriched in pairs of proteins
shown previously to be functionally associated, using
genetic interaction information (see Materials and Meth-
ods). We observe a statistically significant (p � 0.001)
selection for pairs of genetic interactors in the same
clusters and in directly associated clusters compared with
random clusters (see http://www.ebi.ac.uk/research/cgg/
proteinets/) (see Materials and Methods). This result
strongly suggests that detected clusters are specifically
enriched in proteins involved in the same biological pro-
cess and further substantiates that they correspond to
valid functional modules.

Finally, we observe that many detected clusters repre-
sent previously characterized functional modules. One
example is a high-scoring cluster (cluster 46; RKegg � 1.00,
RMIPS � 1.00, RGQFC � 0.76) containing the mitochondrial
F1-F0 ATP synthase complex (EC 3.6.1.34).13,14 In this
cluster, all known protein interactions related to the
formation of this complex are recovered. In addition, two
chaperones (Atp11p, Atp12p), which are essential for F1
complex formation, are also recovered, as are four other
proteins, Inh1p and three proteins of unknown function—
YBR271W, YDR322B, and YML081B. The Inh1p protein
provides connections from this module to other modules
involved in the cytoskeleton, budding, and cell division
(e.g., clusters 69, 77, 147, and 664). Inh1p is known to be
an endogenous inhibitor of the F1F0 ATP synthase, and
this role has been well documented.14 This complex of 17
proteins forming 36 distinct interactions is extracted from
an interaction neighborhood of 149 proteins forming 170
interactions (considering only the first neighbors of the
complex members). The recovery of this vital functional
module from a large, complex, and highly connected net-
work is nontrivial and further illustrates the power of this
approach.

Similarly, many other well-known protein complexes
are found in the detected clusters [e.g., the prereplicative
complex (cluster 99)15 or the oligosaccharyl transferase
complex (cluster 140)16] (see Figs. 3 and 4 for more
examples). To determine to what extent known complexes
were recovered as functional modules, we made use of the
manually curated MIPS definitions of protein complexes.17

We observe that we recover all complexes containing at
least three proteins and that, on average, these complexes
are recovered with 69% recall. Of these, 30% are recovered
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Figure 2.
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with 100% recall, and only �30% of the complexes are
recovered at recall values �50% (not shown). The detec-
tion of curated protein complexes strongly suggests that
many high-scoring modules, which may not have previ-
ously been characterized, are valid and represent interest-
ing and experimentally testable functional associations.

Our results clearly show that detected clusters 1) con-
tain proteins with consistent functional classifications and
cellular localizations, 2) are enriched in proteins of known
functional connectedness, and 3) include many examples
of previously described functional modules. These results
strongly suggest that the detected clusters correspond to
biologically meaningful functional modules. The comple-
mentarity between graph weighting, graph transforma-
tion, and graph flow simulation clustering appears to be
the key factor to the successful isolation of biologically
significant modules. Each of the three steps contributes
heavily toward the final result. If any of these three stages
are omitted, the final clustering result is poor, because the
final clustering scores are lower than those obtained with
the complete protocol. For example, graph flow clustering
of the raw interaction data—without its associated line-
graph—results in the detection of clusters whose scores
were decreased by a factor of 2.4, 1.3, and 2.5, respectively
for KEGG, GQFC, and LOC.

Analysis of the detected functional modules allows the
exploration of both the functional repertoire of proteins
and the biological processes in which they participate.
Furthermore, the detection of a module containing well-
characterized proteins along with proteins of unknown
function, represents a functional prediction for the un-
known proteins. An illustrated example of this type of
analysis for proteins contained in a single module (cluster
55) and involved in vacuolar transport and fusion is shown
in Figure 3. Another key feature of our clustering proce-
dure is that proteins can be present in more than one
functional module. Many of the detected modules contain
proteins that are present in other modules; hence, two
modules containing a common protein can be linked. This
one-to-many relationship can be exploited for pathway
discovery. Illustrating this type of application is the recov-
ery of a signal transduction pathway controlling cell wall

biogenesis, from the membrane protein (Fks1p) to the
transcription factors activated by this pathway (Swi4p, 6p,
and Rlm1p) (Fig. 4). This pathway was recovered as a set
of two clusters, linked by two proteins (Pkc1p and Smd3p)
(Fig. 4).

More generally, the automatic assignment of proteins to
multiple clusters by the present approach allows us to gain
an insight into how elementary biological units interact to
form complex cellular networks. The graph representing
interactions between functional modules is highly con-
nected, illustrating that few biological processes are iso-
lated units, but form a complex web of functional interac-
tions within the cell. A subsection of this complex graph is
shown in Figure 5. This graph shows the connections
between 40 functional modules manually labeled accord-
ing to their basic functional categories. For instance, it
illustrates how several structural modules are linked, via
signaling modules, to cell cycle regulatory modules and to
protein-trafficking modules. In the same figure, one can
see how the RNA polymerase module connects to transcrip-
tional regulatory modules. Thus, analysis of protein inter-
action data can produce testable predictions of interconnect-
edness between functional modules and the high-level
organization of these modules into the entire network of
cellular processes.

In conclusion, using a novel, fully automated and unsu-
pervised discovery protocol, involving transformation and
clustering of networks, we are able to identify biologically
relevant functional modules from protein interaction data.
The method has a predictive aspect, because modules can
subsequently be used to place poorly characterized pro-
teins into their functional context according to their inter-
acting partners within a module. This predictive power
extends to a higher level, because connections between
functional modules can be used to examine the organiza-
tion and coordination of multiple complex cellular pro-
cesses and determine how they are organized into path-
ways. Given the ever-increasing amount of interaction
data available, we expect that the approach described
herein will prove useful in the ongoing efforts to explore
the protein interaction universe and understand how
functional building blocks are assembled into an entire
living system.

MATERIALS AND METHODS
Protein Interaction Data

The protein interaction network is derived from the
yeast subset of the Database of Interacting Proteins (DIP)
(Jan 2002 release).18 The DIP database is appropriate
because it contains curated interactions from both small-
and large-scale experimental studies. This data set con-
sists of 8046 physical interactions involving 4081 yeast
proteins. Most of these interactions have been derived by
yeast two-hybrid screen. Of these interactions, 6586 are
supported by a single observation and all other interac-
tions are supported by at least two experimental observa-
tions.

Fig. 2. Module validation using biological classification schemes.
Distribution of score sums of 1000 sets of randomized clusters compared
to the sum averages of the transformed and clustered network, for each of
the three classification schemes, namely (a) pathway membership, (b)
cellular localization, and (c) functional class assignment (see Materials
and Methods). Each randomized cluster set is generated by taking the
clusters obtained from the clustering of the line graph of protein interac-
tions and randomly shuffling protein identifiers between clusters. This
ensures that the cluster size distribution of random cluster sets remains
constant (and hence the number of proteins), but that cluster membership
of proteins is random. For each randomized set, we compute the score
sum for each classification scheme as described for the line graph
analysis. All three panels are shown on the same scale (y axis); however,
the absolute values obtained (x axis) are highly dependent on the number
of classes being assigned (KEGG � 110; MIPS � 15; GQFC � 17).
Classification schemes with larger numbers of classes typically produce
lower scores according to our scoring scheme. Conversely, lower cover-
age results in lower scores. For this reason, z scores are used to assess
the significance for each classification scheme, being comparable across
schemes.
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Interaction Network Clustering
We first transform the protein interaction network into

a weighted network, where the weights attributed to each
interaction reflect the degree of confidence attributed to
that interaction—where the confidence level represents

the number of experiments that support the interactions
as well as the number of different experimental methodolo-
gies. All experimental methodologies are considered equiva-
lent (no subjective judgment is made on the reliability of
each methodology and given the same absolute score, e.g.,

Fig. 3. Analysis of a functional module. Example of a functional module and its use for functional assignment. Here, cluster 55 recovers a set of
protein interactions (inset) that are involved in the transport route from the endoplasmic reticulum to the vacuole via the prevacuolar compartment, as
well as in homotypic vacuolar fusion23 and vacuole-autophagosome fusion.24 Ykt6p, Vti1p, Vam3p, Vam7p, and Nyv1p are SNARE proteins that have
been shown to be involved in tethering and docking of membranes in different stages of these transport routes.24 Ypt7p is vacuolar-specific “switch”
(small GTPase from the Rab family), Pep3 is a vacuolar docking factor, and Ktr3p is an enzyme involved in protein glycosylation (mannosyltrans-
ferase).23 Many proteins of unknown function (in red), associated directly or indirectly with Vam7p, can thus be predicted to localize to one of the
compartments in these pathways, most likely the vacuole, and possibly be involved in homotypic vacuolar fusion, vacuole-autophagosome fusion, or
transport from the Golgi to the vacuole. It is of interest that two of these proteins (YGL104C/Vps73p and YOL129W/Vps68p) have been found to be
involved in vacuolar protein sorting in a large genomic screen for carboxypeptidase secretion mutants,25 thus supporting the functional assignments
made here. Furthermore, novel aspects of this pathway can be inferred from the analysis of the interactions that are recovered in this module. Vam7p, a
vacuolar SNARE, interacts with Yif1p and Ktr3p. Yif1p is a Golgi-associated protein that interacts with an effector of the early secretory pathway switch
Ypt1p and to Ktr3p, which is expected to be present in earlier stages of this pathway. This points to a previously undescribed role for Vam7p in earlier
stages of this transport route. In addition, the inclusion of Sec10p, a component of the exocysts, suggests a connection between vacuolar transport and
secretion.
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small- and large-scale experiments receive the same score).
On the first instance of an interaction in the data set, we
assign it an initial score of 3.0. For further instances of the
interaction, the score is increased by 1.0 if the method is
different from the other methods used to determine the
interaction, or 0.25 if the interaction had already been
observed by that method. In the end, all scores are
normalized as a percentage of the highest score in the data
set. These data represent a weighted network of proteins
connected by interactions, where the weights qualitatively
reflect the confidence we attribute to each interaction
based on the amount of experimental evidence supporting
it.

Next we express the network of proteins connected by
interactions as a network of interactions; this is known in
graph theory as a line graph. Each binary interaction is
condensed into a node that includes the two interacting
proteins. These nodes are then linked by shared protein
content [Fig. 1(a) and (b)]. The scores for the original
constituent binary interactions are then averaged and
assigned to each edge. We then use TribeMCL,2 an algo-
rithm for clustering by graph flow simulation, at inflation
value 3.0 to cluster the interaction network and recover
clusters of associated interactions. These clusters of inter-
actions are then transformed back from an interaction–

interaction graph to a protein–protein graph for all subse-
quent validation and analysis. It is important to stress
that this procedure is not specifically selecting for high-
confidence interactions, nor is it biased to any experimen-
tal methodology.

Biological Significance of the Detected Modules

Clusters are validated by assessing the consistency of
protein classifications within an individual cluster. We
assign a score to each cluster reflecting the homogeneity of
classifications within that cluster. This is measured, for
each of the three classification schemes, by calculating the
redundancy (Rj) of each cluster j

Rj � 1 � � � � �
s � 1

n

pslog2ps�
log2n

�
In this equation, n represents the number of classes in

the classification scheme, ps represents the relative fre-
quency of the class in cluster j, the numerator represents
the information content in bits given by Shannon’s entropy
(H), and the denominator is a normalizing factor represent-
ing the maximum entropy for the cluster j (Hmax). All

Fig. 4. Pathway discovery from connected modules. Protein interactions in clusters 32 and 86 (pink and blue nodes, respectively). The connections
of components between these clusters permit the reconstruction of a signal transduction pathway central in the regulation of cell wall biogenesis in yeast
(highlighted in black edges).26,27 Shaded areas represent common functions in the clusters. Two proteins appear as central signal integration points in
this pathway. Rho1p is a member of a cluster that includes the 1,3-�-glucan synthase complex and other proteins, essential for cell wall biogenesis.26,27

In addition, regulators of Rho1p activity are included (e.g., Sac7p or Rom2p) as well as proteins that connect this cluster to other protein complexes
(indicated by arrows connecting to the cluster number in square brackets and name). A second major signal integration point in this pathway is Slt2p, a
MAP kinase that activates the transcription factors that are the “end point” of the pathway and connects to known regulators of kinase function (Ptp2p and
Ptp3p protein phosphatases).
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values of R lie between 0 and 1. With this scoring system,
clusters containing many proteins with highly consistent
classifications will receive high scores (R closer to 1),
whereas those with disparate or conflicting classifications
will receive low scores (R closer to 0).

Classification schemes include regulatory and metabolic
pathway membership, functional classification, and cellu-
lar localization. Regulatory and metabolic information for
each gene was obtained from KEGG19 and automatic
functional classification from GeneQuiz.20 Information on
cellular localization was obtained from MIPS/CYGD.17

These three distinct classification schemes were chosen
because they represent different types of classification:
automatic versus manual, high granularity versus low
granularity, sequence based on nonsequence based.

To test if detected clusters were enriched in functionally
associated proteins, we obtained information on genetic
interactions from MIPS/CYGD.17 These genetic interac-
tions were obtained from manual curation of the literature
and from one large-scale study.21 We then compare the
number of pairs of genetic interactors that occur in the

same cluster in the clustered network, with the same 1000
random networks (as described in Fig. 2).

Protein complexes were obtained from MIPS/CYGD,17

representing 265 manually defined protein complexes. We
define the protein complex size as the number of proteins
in the complex that are available. We chose to use solely
complexes with at least three proteins to avoid artificially
increasing the recall values. We test for each complex if it
corresponds to any of the clusters detected and which
proportion of the complex is contained within a single
cluster (recall).
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Fig. 5. Network of functional modules. Section of the network of functional modules connected by shared proteins. The nodes correspond to clusters
of R � 0.5 and are colored according to general functional classes (see inset legend). Modules are assigned to functional classes by manual curation via
analysis of the functions of their constituent proteins.
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